By Topic

Feature extraction from hyperspectral images compressed using the JPEG-2000 standard

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. D. Pal ; Los Alamos Nat. Lab., NM, USA ; C. M. Brislawn ; S. R. Brumby

We present results quantifying the exploitability of compressed remote sensing imagery. The performance of various feature extraction and classification tasks is measured on hyperspectral images coded using the JPEG-2000 Standard. Spectral decorrelation is performed using the Karhunen-Loeve transform and the 9-7 wavelet transform as part of the JPEG-2000 process. The quantitative performance of supervised, unsupervised, and hybrid classification tasks is reported as a function of the compressed bit rate for each spectral decorrelation scheme. The tasks examined are shown to perform with 99% accuracy at rates as low as 0.125 bits/pixel/band. This suggests that one need not limit remote sensing systems to lossless compression only, since many common classification tools perform reliably on images compressed to very low bit rates

Published in:

Image Analysis and Interpretation, 2002. Proceedings. Fifth IEEE Southwest Symposium on

Date of Conference: