By Topic

Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chengjun Liu ; Dept. of Comput. Sci., New Jersey Inst. of Technol., Newark, NJ, USA ; H. Wechsler

This paper introduces a novel Gabor-Fisher (1936) classifier (GFC) for face recognition. The GFC method, which is robust to changes in illumination and facial expression, applies the enhanced Fisher linear discriminant model (EFM) to an augmented Gabor feature vector derived from the Gabor wavelet representation of face images. The novelty of this paper comes from (1) the derivation of an augmented Gabor feature vector, whose dimensionality is further reduced using the EFM by considering both data compression and recognition (generalization) performance; (2) the development of a Gabor-Fisher classifier for multi-class problems; and (3) extensive performance evaluation studies. In particular, we performed comparative studies of different similarity measures applied to various classifiers. We also performed comparative experimental studies of various face recognition schemes, including our novel GFC method, the Gabor wavelet method, the eigenfaces method, the Fisherfaces method, the EFM method, the combination of Gabor and the eigenfaces method, and the combination of Gabor and the Fisherfaces method. The feasibility of the new GFC method has been successfully tested on face recognition using 600 FERET frontal face images corresponding to 200 subjects, which were acquired under variable illumination and facial expressions. The novel GFC method achieves 100% accuracy on face recognition using only 62 features

Published in:

IEEE Transactions on Image Processing  (Volume:11 ,  Issue: 4 )