By Topic

Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sarkar, N. ; Mech. Eng. Dept., Vanderbilt Univ., Nashville, TN, USA ; Podder, T.K. ; Antonelli, G.

A new approach to the fault-accommodating allocation of thruster forces of an autonomous underwater vehicle (AUV) is investigated in this paper. This paper presents a framework that exploits the excess number of thrusters to accommodate thruster faults during operation. First, a redundancy resolution scheme is presented that considers the presence of an excess number of thrusters along with any thruster faults and determines the reference thruster forces to produce the desired motion. This framework is then extended to incorporate a dynamic state feedback technique to generate reference thruster forces that are within the saturation limit of each thruster. Results from both computer simulations and experiments are provided to demonstrate the viability of the proposed scheme

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:18 ,  Issue: 2 )