Cart (Loading....) | Create Account
Close category search window
 

Electrically small self-resonant wire antennas optimized using a genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Altshuler, E.E. ; Sensors Directorate, Air Force Res. Lab., Hanscom AFB, MA, USA

One of the major limitations of electrically small antennas is that as the size of the antenna is decreased its radiation resistance approaches zero and its reactance approaches plus or minus infinity. Most small antennas are inefficient, nonresonant and, thus, require matching networks. In this investigation, we use a genetic algorithm (GA) in conjunction with the numerical electromagnetics code to search for resonant wire shapes that best utilize the volume within which the antenna is confined. Antenna configurations, over a ground plane, having from two to ten wire segments, were optimized near 400 MHz and then built and tested. As the cube size deceased from a side length of 0.096λ to 0.026λ, the computed Qs increased from 15.8 to 590. The measured Qs increased from 16.0 to 134 for cubes of 0.093 to 0.037λ on edge. This process for designing small antennas using a GA produced new self-resonant antenna configurations

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:50 ,  Issue: 3 )

Date of Publication:

Mar 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.