By Topic

Recursive least squares algorithm for optical diffusion tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Algebraic reconstruction techniques (ART) is a family of practical algorithms which sets algebraic equations for the unknowns in terms of the measured data and solves these equations iteratively. It is typical that the system of linear equations obtained in Diffuse Optical Tomography (DOT) is underdetermined and/or ill-conditioned. ART is one of the most popular image reconstruction techniques used in DOT to solve this kind of system of linear equations. There is, however, no natural way of including a priori information about the image in ART algorithm. Moreover ART requires a large number of iterations to reconstruct the image and hence convergence to the solution is slow. In this paper, for the inverse problem in DOT, we apply a Recursive Least Squares Algorithm (IUS) that converges in only one iteration and enables the use of a priori information such as image smoothness.We present comparison between the images reconstructed by ART and IUS.

Published in:

Bioengineering Conference, 2002. Proceedings of the IEEE 28th Annual Northeast

Date of Conference:

21-21 April 2002