By Topic

The role of surface plasmons in organic light-emitting diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hobson, P.A. ; Sch. of Phys., Exeter Univ., UK ; Wasey, J.A.E. ; Sage, I. ; Barnes, W.L.

Organic light-emitting diodes typically take the form of an optical microcavity in which one layer is a metallic cathode. Coupling between emissive species in the light emitting layer and surface plasmon (SP) modes associated with the metallic cathode result in a loss of efficiency; an aspect often discussed but not so far fully quantified. Here we numerically model the extent of this problem, both for organic light-emitting diodes based on small molecules (Alq3) and those based on conjugated polymers (MEH-PPV). We show that SP modes can significantly detract from device efficiency, particularly those based on small molecules. We then report measurements of photo- and electroluminescence from organic light-emitting diodes incorporating wavelength scale periodic structure. These data demonstrate the existence of the SP modes in organic light-emitting diodes. Finally we consider ways in which the problems associated with SPs might be overcome, and may even be turned to advantage

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:8 ,  Issue: 2 )