By Topic

An efficient method to determine Green's functions of a two-dimensional photonic crystal excited by a line source - the phased-array method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Caloz, C. ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; Skrivervik, A.K. ; Gardiol, F.E.

A novel and efficient method to determine Green's functions in photonic crystals (PCs), i.e., the phased-array method (PAM), is presented. The PAM is a combination of the plane-wave method and the array-scanning method, which is both more flexible and computationally faster than the eigenmodes expansion method. A complete derivation of the electric- and magnetic-field Green's functions associated, respectively, with an infinite electric and magnetic current line exciting a two-dimensional PC is given. Although the developments are presented only for a line source, the PAM can be extended to a dipole source. Thus, the PAM represents a promising method for the analysis of printed-circuit elements or antennas on PC materials. Numerical results for the Green's functions are shown for different positions of the source and a discussion about radiation patterns, asymptotic behaviors, and convergence characteristics is proposed.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:50 ,  Issue: 5 )