By Topic

Evaluation of test procedures for determining servo compatibility of heads and media in magnetic disk drives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. D. Mathur ; Seagate Technol., Shakopee, MN, USA ; W. C. Messner

We evaluate a testing specification proposed by the National Storage Industry Consortium's (NSIC) Extremely High Density Recording (EHDR) group for evaluating head and media compatibility for servo performance in magnetic disk drives. These tests use average amplitude and average noise profile measurements across isolated tracks to predict the shape, linearity, noise, and long-term stability of position error signal (PES) patterns. We compare the predictions from these tests to measurements from null and amplitude PES patterns written on a spin-stand. Results show average PES-profile prediction errors of 1%-2% track width and noise level prediction within a factor of 2. We present data from tests for long-term stability of the magnetoresistive (MR) read element after repeated write cycles by the inductive write head. In the set of heads we tested, the MR head's center and effective width changed only slightly. Although we evaluated the NSIC specification for MR read elements, the specification should be equally valid for other read head types also, as long as the PES patterns are similar

Published in:

IEEE Transactions on Magnetics  (Volume:38 ,  Issue: 3 )