Cart (Loading....) | Create Account
Close category search window
 

Comprehensive model of magnetization curve, hysteresis loops, and losses in any direction in grain-oriented Fe-Si

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fiorillo, F. ; Ist. Elettrotecnico Nazionale Galileo Ferraris, Torino, Italy ; Dupre, L.R. ; Appino, C. ; Rietto, A.

We report an investigation and theoretical assessment of the DC magnetic properties of high-permeability grain-oriented (GO) Fe-Si laminations under variously directed applied fields. We verified that normal magnetization curves, hysteresis loops, and energy losses depend on the field direction according to the sample geometry. This is explainable in terms of specific 180° and 90° domain wall processes and magnetization rotations. We present a novel phenomenological theory of the magnetization curves and hysteresis losses in GO laminations, excited along a generic direction; the theory is based on the single crystal approximation and pre-emptive knowledge of the magnetic behavior of the material along the rolling (RD) and the transverse (TD) directions. This approach is consistent with the general structure of Neel's phase theory, with the additional consideration of hysteresis and losses. Epstein and cross-stacked sheet testing methods are the two base measuring configurations; all the other testing geometries (single sheet, disk, square) are expected to display intermediate behavior. The devised model provides, through a direct procedure, thorough and accurate prediction of magnetization curves and quasi-static losses in these two basic cases. Its application to the other geometries is equally possible, with only a limited amount of supplementary information

Published in:

Magnetics, IEEE Transactions on  (Volume:38 ,  Issue: 3 )

Date of Publication:

May 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.