Cart (Loading....) | Create Account
Close category search window
 

35-dB nonlinear crosstalk suppression in a WDM analog fiber system by complementary modulation of twin carriers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wong, K.K.Y. ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Marhic, M.E. ; Min-Chen Ho ; Kazovsky, Leonid G.

We investigate, theoretically and experimentally, a novel scheme to suppress the crosstalk between wavelengths in wavelength-division-multiplexing (WDM) analog fiber systems. The idea is based on the fact that crosstalk (due to stimulated Raman scattering and cross-phase modulation combined with group velocity dispersion), is caused by the intensity modulation of one channel affecting a second channel in a WDM system. Then, if an auxiliary carrier (twin) with complementary modulation is introduced very close to the first channel, their combined intensity will be constant and there will be no nonlinear crosstalk induced at the second channel. We have obtained up to 35-dB crosstalk reduction at low modulation frequencies, where crosstalk is most severe.

Published in:

Photonics Technology Letters, IEEE  (Volume:14 ,  Issue: 5 )

Date of Publication:

May 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.