By Topic

Effect of block-iterative acceleration on Ga-67 tumor detection in thoracic SPECT

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Gifford, H.C. ; Dept. of Radiol., Massachusetts Univ. Med. Center, Worcester, MA, USA ; King, M.A. ; Narayanan, M.V. ; Pretorius, P.H.
more authors

A combination of human localization receiver operating characteristic (LROC) and channelized Hotelling observer (CHO) ROC psychophysical studies were used to investigate how accelerated ordered-subset expectation maximization (OSEM) and rescaled block-iterative (RBI) EM reconstruction affect tumor detection in simulated Ga-67 SPECT images, The tumors were 1-cm-diameter spheres within the chest region of the three-dimensional mathematical cardiac-torso phantom. Previous work with iterative detector resolution compensation showed that eight iterations of the OSEM algorithm with a subset size of eight (16 subsets) offered optimal observer performance. For the LROC study in this paper, the OSEM and RBI algorithms were implemented using subset sizes P and iterations K that satisfied the relation P=K for P=1, 2, 4, and 8. The CHO was applied to reconstruction strategies that deviated from this relation. Results show that using P⩽2 penalized observer performance compared to strategies with larger subset sizes. Other researchers have reported on the more stable convergence and noise properties of the RBI algorithm [(Byrne, 1996) and (Lalush and Tsui, 2000)]. In a similar vein, we found that an RBI strategy with a subset size of P produced the same performance as an OSEM strategy with subset size 2P. As neither algorithm displayed a decisive advantage in speed over the other, we conclude that the RBI algorithm is the better choice for accelerating the Ga-67 reconstructions

Published in:

Nuclear Science, IEEE Transactions on  (Volume:49 ,  Issue: 1 )