By Topic

Impact of spatial intrachip gate length variability on the performance of high-speed digital circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Orshansky, M. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Milor, L. ; Chen, P. ; Keutzer, K.
more authors

In this paper we address both empirically and theoretically the impact of an advanced manufacturing phenomenon on the performance of high-speed digital circuits. Using data collected from an actual state-of-the-art fabrication facility, we conducted a comprehensive characterization of an advanced 0.18-μm CMOS process. The measured data revealed a significant systematic, rather than random spatial intrachip variability of MOS gate length, leading to large circuit path delay variation. The delay of the critical path of a combinational logic block varies by as much as 17%, and the global skew is increased by 8%. Thus, a significant timing error and performance loss takes place if variability is not properly addressed. We derive a model, which allows estimating performance degradation for the given circuit and process parameters. We demonstrate explicitly that intrachip Lgate variation has a significant detrimental impact on the overall circuit performance, shifting the entire distribution of clock frequencies toward slower values. This is in striking contrast to the impact of interchip Lgate variation, traditionally considered in statistical circuit analysis, which leads to the variation of chip clock frequencies around the average value. Moreover, analysis shows that the spatial, rather than proximity-dependent systematic Lgate variability, is the main cause of large circuit speed degradation. The degradation is worse for the circuits with a larger number of critical paths and shorter average logic depth. We propose a location-dependent timing analysis methodology that allows mitigation of the detrimental effects of Lgate variability and have developed a tool linking the layout-dependent spatial information to circuit analysis. We discuss the details of practical implementation of the methodology, and provide guidelines for managing design complexity

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:21 ,  Issue: 5 )