Cart (Loading....) | Create Account
Close category search window
 

Dynamic voltage scaling algorithm for dynamic-priority hard real-time systems using slack time analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Woonseok Kim ; Sch. of Comput. Sci. & Eng., Seoul Nat. Univ., South Korea ; Jihong Kim ; Sang Lyul Min

Dynamic voltage scaling (DVS), which adjusts the clock speed and supply voltage dynamically, is an effective technique in reducing the energy consumption of embedded real-time systems. The energy efficiency of a DVS algorithm largely depends on the performance of the slack estimation method used in it. In this paper, we propose a novel DVS algorithm for periodic hard real-time tasks based on an improved slack estimation algorithm. Unlike the existing techniques, the proposed method takes full advantage of the periodic characteristics of the real-time tasks under priority-driven scheduling such as EDF. Experimental results show that the proposed algorithm reduces the energy consumption by 20∼40 % over the existing DVS algorithm. The experiment results also show that our algorithm based on the improved slack estimation method gives comparable energy savings to the DVS algorithm based on the theoretically optimal (but impractical) slack estimation method.

Published in:

Design, Automation and Test in Europe Conference and Exhibition, 2002. Proceedings

Date of Conference:

2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.