By Topic

Impedance control of a teleoperated excavator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tafazoli, S. ; Dept. of Electr. & Comput. Eng., British Columbia Univ., Vancouver, BC, Canada ; Salcudean, S.E. ; Hashtrudi-Zaad, K. ; Lawrence, P.D.

Earth-moving machines such as hydraulic excavators are usually used for carrying out contact tasks. Impedance control can be employed as an approach for achieving compliant motion in such tasks. This paper describes a position-based impedance controller that has been developed in our laboratory for excavator-type manipulators, and presents the supporting experimental results. First, the problem of impedance control for a single hydraulic cylinder is addressed and a method is presented to analyze the system stability. The steady-state position and force tracking accuracy of the closed-loop system is also studied. Next, the problem of impedance control for a multi-link hydraulic excavator is addressed and the arm Jacobian and accurate estimates of the arm inertial terms are employed to map the desired impedance of the end-effector (bucket of the excavator) onto the hydraulic cylinders. Various contact experiments carried out using an instrumented mini-excavator demonstrate that the proposed impedance controller has very good performance for both single-link and multilink cases

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:10 ,  Issue: 3 )