By Topic

Minimizing register requirements for synchronous circuits derived using software pipelining techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chabini, N. ; DIRO, Montreal Univ., Que., Canada ; Aboulhamid, E.M. ; Savaria, Y.

A method based on software pipelining has been recently proposed to optimize mono-phase clocked sequential circuits. The resulting circuits are multi-phase clocked sequential circuits, where all clocks have the same period. To preserve functionality of the original circuit, registers must be placed according to a correct schedule. This schedule also ensures maximum throughput. In that method, it is a question of (1) how to determine a schedule that requires the minimum number of registers, and (2) how to place these registers optimally. In this paper, problems (1) and (2) are tackled simultaneously. More precisely, we deal with the problem of determining schedules with the minimum register requirements, where the optimal register placement is done during the schedule determination. To optimally solve that problem, we provide a mixed integer linear program that we use to derive a linear program, which is polynomial-time solvable. Experimental results confirm the effectiveness of the approach, and show that significant reductions of the number of registers can be obtained.

Published in:

Microelectronics, 2001. ICM 2001 Proceedings. The 13th International Conference on

Date of Conference:

29-31 Oct. 2001