By Topic

Micromachined L-switching matrix

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. W. Yeow ; Robotics & Autom. Lab., Toronto Univ., Ont., Canada ; K. L. E. Law ; A. A. Goldenberg

Explosion in Internet applications has stimulated active research activities in expanding the capability of the current telecommunication networks. These activities include implementing faster electronics to process the higher data bit rates, or developing wavelength division multiplexing (WDM) techniques, and novel optical networks components to increase the information carrying capacity of the optical networks. As the data bit rates increases, it will become increasingly difficult to implement an electronic switching fabric solution. It is known that the information carrying laser beams should be dealt with at the optical level. One of most promising optical network components is micromachined optical cross connect switches. We present a new crossbar switching design methodology that decreases the number of mirrors and electrodes needed while maintaining the same non-blocking port switching capability. More importantly, this new architecture also reduces the distance of free-space propagation of light beams, thus reducing the loss due to Guassian-beam divergence during free-space propagation of light.

Published in:

Communications, 2002. ICC 2002. IEEE International Conference on  (Volume:5 )

Date of Conference: