Cart (Loading....) | Create Account
Close category search window

A robust digital delay line architecture in a 0.13 μm CMOS technology node for reduced design and process sensitivities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Raha, P. ; World- Wide ASIC Div., Texas Instrum. Inc., Dallas, TX, USA ; Randall, S. ; Jennings, R. ; Helmick, B.
more authors

The combination of high operating frequencies and low-power requirements for DSP cores targeted towards mobile applications makes clock synthesis and phase synchronization for these devices very challenging. These constraints make all-digital solutions (digital PLLs and DLLs) an attractive option (Dunning et al, 1995; Fried, 1996; Minami et al, 2000). This paper describes a digital delay-line architecture that can be used for these applications in a 0.11 μm (silicon gate length) CMOS technology. Process variability and sensitivities increase at these geometries and it is difficult to meet target specifications across the entire spread of variations in process, voltages and temperatures (PVT corners). The design methodology presented in this paper minimizes these sensitivities.

Published in:

Quality Electronic Design, 2002. Proceedings. International Symposium on

Date of Conference:


Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.