By Topic

Coupled electromagnetic-circuit simulation of arbitrarily-shaped conducting structures using triangular meshes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jandhyala, V. ; Dept. of Electr. Eng., Washington Univ., Seattle, WA, USA ; Yong Wang ; Gope, D. ; Shi, R.

The partial-element-equivalent-circuit (PEEC) approach is an effective method to convert three-dimensional on-chip multiconductor structures to circuit-level descriptions. In this paper, a triangular-mesh-based PEEC approach is described, wherein the surfaces of arbitrarily-shaped conducting structures are represented by triangular mesh tesselations. A coupled EM-circuit formulation is obtained through the separation of the scalar, vector, and ohmic potential interactions between pairs of triangular edges-based basis functions. The overall approach can be interpreted as a SPICE-free, surface-only version of PEEC method and is especially useful for on-chip signal integrity analysis of systems-on-chip layout where components with irregular shapes are common.

Published in:

Quality Electronic Design, 2002. Proceedings. International Symposium on

Date of Conference: