Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Synthetic aperture imaging with arrays of arbitrary shape. Part I. General case

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Norton, Stephen J. ; Geophex Ltd., Raleigh, NC, USA

The problem of synthesizing full-aperture resolution with linear transmitting and receiving arrays of arbitrary shape is considered. The arrays are assumed to lie in the same plane and can be open (e.g., curved or straight line segments) or closed (e.g., circles). It is shown that a full (area) aperture can be synthesized by suitably weighting the transmitted and received signals. This weighting turns out to be the Jacobian of a transformation that yields uniform coverage in the spatial-frequency domain. If the Jacobian is factorable, then full-aperture resolution can be achieved in a single transmission. The theory is illustrated with two annular arrays of different diameter: one that transmits and one that receives. If the radii of the annular arrays are a and b, then the synthesized point-spread function (PSF) is shown to be equivalent to that of a filled circular aperture of radius a+b.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:49 ,  Issue: 4 )