Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Spiral-CT-based assessment of tracheal stenoses using 3-D-skeletonization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Sorantin, E. ; Dept. of Radiol., Univ. Hosp. Graz, Austria ; Halmai, C. ; Erdohelyi, B. ; Palagyi, K.
more authors

Demonstration of a technique for three-dimensional (3-D) assessment of tracheal-stenoses, regarding site, length and degree, based on spiral computed tomography (S-CT). S-CT scanning and automated segmentation of the laryngo-tracheal tract (LTT) was followed by the extraction of the LTT medial axis using a skeletonization algorithm. Orthogonal to the medial axis the LTT 3-D cross-sectional profile was computed and presented as line charts, where degree and length was obtained. Values for both parameters were compared between 36 patients and 18 normal controls separately. Accuracy and precision was derived from 17 phantom studies. Average degree and length of tracheal stenoses was found to be 60.5% and 4.32 cm in patients compared with minor caliber changes of 8.8% and 2.31 cm in normal controls (p ≪ 0.0001). For the phantoms an excellent correlation between the true and computed 3-D cross-sectional profile was found (p ≪ 0.005) and an accuracy for length and degree measurements of 2.14 mm and 2.53% respectively could be determined. The corresponding figures for the precision were found to be 0.92 mm and 2.56%. LTT 3-D cross-sectional profiles permit objective, accurate and precise assessment of LTT caliber changes. Minor LTT caliber changes can be observed even in normals and, in case of an otherwise normal S-CT study, can be regarded as artifacts.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:21 ,  Issue: 3 )