By Topic

An algebraic multilevel preconditioner for field-circuit coupled problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lahaye, D. ; Dept. of Comput. Sci., Katholieke Univ., Leuven, Belgium ; Vandewalle, S. ; Hameyer, K.

Quasi-stationary magnetic field formulations are often coupled with lumped parameter models for the driving electrical system. The finite element discretization of such formulations yields linear systems with a large sparse coefficient matrix bordered by dense coupling blocks. The presence of these blocks prevents the straightforward application of black box algebraic multigrid solvers. We present a modified multigrid cycle that takes the coupling blocks into account. The resulting algebraic multigrid solver is used as a preconditioner for the conjugate gradient method for complex symmetric systems. We give evidence of the efficiency of the new method for the calculation of an induction motor

Published in:

Magnetics, IEEE Transactions on  (Volume:38 ,  Issue: 2 )