By Topic

A fast solver for FEM analyses using the parallelized algebraic multigrid method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mifune, T. ; Dept. of Electr. Eng., Kyoto Univ., Japan ; Iwashita, T. ; Shimasaki, M.

The algebraic multigrid (AMG) method is an efficient solver for linear systems arising in finite element analyses. The AMG method is applicable at a matrix level, different from the geometric multigrid solvers. This paper proposes a combination of the parallel processing technique and the AMG method as a fast solver for electromagnetic field analyses. While the AMG method consists of a setup phase and a solution phase, parallel processing of the former phase is difficult. We present the use of long-range interpolation instead of the conventional direct interpolation for improvement of the parallel efficiency of the AMG setup phase. A magnetostatic analysis and an eddy-current analysis show the solver performance. The numerical results show that parallelized AMG is a fast solver and has sufficient scalability, as compared with the conventional solver

Published in:

Magnetics, IEEE Transactions on  (Volume:38 ,  Issue: 2 )