By Topic

Genetic object recognition using combinations of views

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bebis, G. ; Dept. of Comput. Sci., Nevada Univ., Reno, NV, USA ; Louis, S. ; Varol, Y. ; Yfantis, A.

Investigates the application of genetic algorithms (GAs) for recognizing real 2D or 3D objects from 2D intensity images, assuming that the viewpoint is arbitrary. Our approach is model-based (i.e. we assume a pre-defined set of models), while our recognition strategy relies on the theory of algebraic functions of views. According to this theory, the variety of 2D views depicting an object can be expressed as a combination of a small number of 2D views of the object. This implies a simple and powerful strategy for object recognition: novel 2D views of an object (2D or 3D) can be recognized by simply matching them to combinations of known 2D views of the object. In other words, objects in a scene are recognized by "predicting" their appearance through the combination of known views of the objects. This is an important idea, which is also supported by psychophysical findings indicating that the human visual system works in a similar way. The main difficulty in implementing this idea is determining the parameters of the combination of views. This problem can be solved either in the space of feature matches among the views ("image space") or the space of parameters ("transformation space"). In general, both of these spaces are very large, making the search very time-consuming. In this paper, we propose using GAs to search these spaces efficiently. To improve the efficiency of genetic searching in the transformation space, we use singular value decomposition and interval arithmetic to restrict the genetic search to the most feasible regions of the transformation space. The effectiveness of the GA approaches is shown on a set of increasingly complex real scenes where exact and near-exact matches are found reliably and quickly

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:6 ,  Issue: 2 )