System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Distributed predicate detection in series-parallel systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dumais, G. ; Silanis Technol. Inc., St. Laurent, Que., Canada ; Li, H.F.

This paper addresses the problems of state space decomposition and predicate detection in a distributed computation involving asynchronous messages. We introduce a natural communication dependency which leads to the definition of the communication graph. This abstraction proves to be a useful tool to decompose the state lattice of a distributed computation into simpler structures, known as concurrent intervals. Efficient algorithms have been proposed in the literature to detect special classes of predicates, such as conjunctive predicates and bounded sum predicates. We show that more general classes of predicates can be detected when proper constraints are imposed on the underlying computations. In particular, we introduce a class of predicates, defined as separable predicates, that properly includes the above-mentioned classes. We show that separable predicates can be efficiently detected on distributed computations whose communication graphs satisfy the series-parallel constraint

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:13 ,  Issue: 4 )