By Topic

Using complete machine simulation for software power estimation: the SoftWatt approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gurumurthi, S. ; Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA, USA ; Sivasubramaniam, A. ; Irwin, M.J. ; Vijaykrishnan, N.
more authors

Power dissipation has become one of the most critical factors for the continued development of both high-end and low-end computer systems. We present a complete system power simulator, called SoftWatt, that models the CPU, memory hierarchy, and a low-power disk subsystem and quantifies the power behavior of both the application and operating system. This tool, built on top of the SimOS infrastructure, uses validated analytical energy models to identify the power hotspots in the system components, capture relative contributions of the user and kernel code to the system power profile, identify the power-hungry operating system services and characterize the variance in kernel power profile with respect to workload. Our results using Spec JVM98 benchmark suite emphasize the importance of complete system simulation to understand the power impact of architecture and operating system on application execution.

Published in:

High-Performance Computer Architecture, 2002. Proceedings. Eighth International Symposium on

Date of Conference:

2-6 Feb. 2002