By Topic

Energy-efficient processor design using multiple clock domains with dynamic voltage and frequency scaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
G. Semeraro ; Dept. of Comput. Sci., Rochester Univ., NY, USA ; G. Magklis ; R. Balasubramonian ; D. H. Albonesi
more authors

As clock frequency increases and feature size decreases, clock distribution and wire delays present a growing challenge to the designers of singly-clocked, globally synchronous systems. We describe an alternative approach, which we call a multiple clock domain (MCD) processor, in which the chip is divided into several clock domains, within which independent voltage and frequency scaling can be performed. Boundaries between domains are chosen to exploit existing queues, thereby minimizing inter-domain synchronization costs. We propose four clock domains, corresponding to the front end , integer units, floating point units, and load-store units. We evaluate this design using a simulation infrastructure based on SimpleScalar and Wattch. In an attempt to quantify potential energy savings independent of any particular on-line control strategy, we use off-line analysis of traces from a single-speed run of each of our benchmark applications to identify profitable reconfiguration points for a subsequent dynamic scaling run. Using applications from the MediaBench, Olden, and SPEC2000 benchmark suites, we obtain an average energy-delay product improvement of 20% with MCD compared to a modest 3% savings from voltage scaling a single clock and voltage system.

Published in:

High-Performance Computer Architecture, 2002. Proceedings. Eighth International Symposium on

Date of Conference:

2-6 Feb. 2002