By Topic

Statistical characterization of urban spatial radio channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Toeltsch, M.. ; Inst. fur Nachrichtentech. und Hochfrequenztech., Technische Univ. Wien, Austria ; Laurila, J. ; Kalliola, K. ; Molisch, A.F.
more authors

We present a statistical analysis of wideband three-dimensional channel measurements at base station locations in an urban environment. Plots of the received energy over azimuth, elevation, and delay planes suggest that the incident waves group to clusters in most measured transmitter positions. A super-resolution algorithm (Unitary ESPRIT) allows one to resolve individual multipath components in such clusters and hence enables a detailed statistical analysis of the propagation properties. The origins of clusters-sometimes even individual multipath components-such as street apertures, large buildings, roof edges, or building corners can be localized on the city map. Street guided propagation dominates most of the scenarios (78%-97% of the total received power), while quasi-line-of-sight over-the-rooftop components are weak(3%-13% of the total received power). For this measurement campaign, in 90% of the cases, 75% of the total received power is concentrated in the two strongest clusters, but only 55% in the strongest one. Our analysis yields an exponential decay of power with 8.9 dB/μs, and a standard deviation of the log-normally distributed deviations from the exponential of 9.0 dB. The power of cross-polarized components is 8 dB below copolarized ones on average (vertical transmission)

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:20 ,  Issue: 3 )