By Topic

Data fusion using feature selection based causal network algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bin Han ; Nat. Lab. for Ind. Control Technol., Zhejiang Univ., Hangzhou, China ; Tie-Jun Wu

We propose a statistical definition of reduct and develop a feature selection algorithm based upon it. It shows that the features found by this algorithm get the largest coverage of the objects, and is most resistant to noise compared with the results found by genetic and dynamic reduct searching algorithm when they are applied to a water-pollution monitoring multisensor fusion system, which is described by the causal network model. Comparative tests show that with the selected features, the efficiency of the causal network based searching algorithm is greatly improved, at the same time the classification accuracy is maintained.

Published in:

Information, Decision and Control, 2002. Final Program and Abstracts

Date of Conference:

11-13 Feb. 2002