By Topic

An automated verification method for distributed systems software based on model extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. J. Holzmann ; Lucent Technol. Bell Labs., Murray Hill, NJ, USA ; M. H. Smith

Software verification methods are used only sparingly in industrial software development today. The most successful methods are based on the use of model checking. There are, however, many hurdles to overcome before the use of model checking tools can truly become mainstream. To use a model checker, the user must first define a formal model of the application, and to do so requires specialized knowledge of both the application and of model checking techniques. For larger applications, the effort to manually construct a formal model can take a considerable investment of time and expertise, which can rarely be afforded. Worse, it is hard to secure that a manually constructed model can keep pace with the typical software application, as it evolves from the concept stage to the product stage. We describe a verification method that requires far less specialized knowledge in model construction. It allows us to extract models mechanically from source code. The model construction process now becomes easily repeatable, as the application itself continues to evolve. Once the model is constructed, existing model checking techniques allow us to perform all checks in a mechanical fashion, achieving nearly complete automation. The level of thoroughness that can be achieved with this new type of software testing is significantly greater than for conventional techniques. We report on the application of this method in the verification of the call processing software for a new telephone switch that was developed at Lucent Technologies

Published in:

IEEE Transactions on Software Engineering  (Volume:28 ,  Issue: 4 )