By Topic

A system for automatic classification of aircraft flyovers using acoustic data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J Sendt ; Thales Underwater Syst. P/L, Rydalmere, NSW, Australia ; G. Pulford ; Yujin Gao ; A. Maguer

An overview of a system for the automatic classification of aircraft from flyover data is presented. The system is passive, utilising acoustic sensors to measure both broadband and narrowband energy. Aspects of the system architecture, sensor design and signal processing are covered. The processing is divided into three streams: broadband, narrowband and cepstrum. Each processing stream is capable of extracting flight parameter estimates from the acoustic data. Broadband estimation is based on the time-delay cross correlation of signals from multiple sensors. Narrowband estimation makes use of the spectrogram of the data to extract frequency lines produced by the aircraft and subject to the acoustical Doppler effect. Cepstrum processing tracks the primary rahmonic in the cepstrogram due to multipath interference. A novel hidden Markov model tracking technique is applied to form tracks on the noisy spectrogram and cepstrogram data. Examples of real data processing and flight parameter estimates for classification are given.

Published in:

Information, Decision and Control, 2002. Final Program and Abstracts

Date of Conference:

11-13 Feb. 2002