Cart (Loading....) | Create Account
Close category search window

A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chia-Feng Juang ; Dept. of Electr. Eng., Nat. Chung-Hsing Univ., Taichung, Taiwan

In this paper, a TSK-type recurrent fuzzy network (TRFN) structure is proposed. The proposal calls for the design of TRFN by either neural network or genetic algorithms depending on the learning environment. A recurrent fuzzy network is described which develops from a series of recurrent fuzzy if-then rules with TSK-type consequent parts. The recurrent property comes from feeding the internal variables, derived from fuzzy firing strengths, back to both the network input and output layers. In this configuration, each internal variable is responsible for memorizing the temporal history of its corresponding fuzzy rule. The internal variable is also combined with external input variables in each rule's consequence, which shows an increase in network learning ability. TRFN design under different learning environments is next advanced. For problems where supervised training data is directly available, TRFN with supervised learning (TRFN-S) is proposed, and a neural network (NN) learning approach is adopted for TRFN-S design. An online learning algorithm with concurrent structure and parameter learning is proposed. With flexibility of partition in the precondition part, and outcome of TSK-type, the TRFN-S displays both small network size and high learning accuracy. For problems where gradient information for NN learning is costly to obtain or unavailable, like reinforcement learning, TRFN with Genetic learning (TRFN-G) is put forward. The precondition parts of TRFN-G are also partitioned in a flexible way, and all free parameters are designed concurrently by genetic algorithm. Owing to the well-designed network structure of TRFN, TRFN-G, like TRFN-S, is characterized by high learning accuracy. To demonstrate the superior properties of TRFN, TRFN-S is applied to dynamic system identification and TRFN-G to dynamic system control. By comparing the results to other types of recurrent networks and design configurations, the efficiency of TRFN is verified

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:10 ,  Issue: 2 )

Date of Publication:

Apr 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.