By Topic

Analysis and design of OFDM/OQAM systems based on filterbank theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Siohan, P. ; France Telecom R&D, Cesson-Sevigne, France ; Siclet, C. ; Lacaille, N.

A discrete-time analysis of the orthogonal frequency division multiplex/offset QAM (OFDM/OQAM) multicarrier modulation technique, leading to a modulated transmultiplexer, is presented. The conditions of discrete orthogonality are established with respect to the polyphase components of the OFDM/OQAM prototype filter, which is assumed to be symmetrical and with arbitrary length. Fast implementation schemes of the OFDM/OQAM modulator and demodulator are provided, which are based on the inverse fast Fourier transform. Non-orthogonal prototypes create intersymbol and interchannel interferences (ISI and ICI) that, in the case of a distortion-free transmission, are expressed by a closed-form expression. A large set of design examples is presented for OFDM/OQAM systems with the number of subcarriers going from four up to 2048, which also allows a comparison between different approaches to get well-localized prototypes

Published in:

Signal Processing, IEEE Transactions on  (Volume:50 ,  Issue: 5 )