By Topic

Block adaptive filters with deterministic reference inputs for event-related signals: BLMS and BRLS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Olmos, S. ; Dept. of Electroscience, Lund Univ., Sweden ; Sornmo, L. ; Laguna, P.

Adaptive estimation of the linear coefficient vector in truncated expansions is considered for the purpose of modeling noisy, recurrent signals. Two different criteria are studied for block-wise processing of the signal: the mean square error (MSE) and the least squares (LS) error. The block LMS (BLMS) algorithm, being the solution of the steepest descent strategy for minimizing the MSE, is shown to be steady-state unbiased and with a lower variance than the LMS algorithm. It is demonstrated that BLMS is equivalent to an exponential averager in the subspace spanned by the truncated set of basis functions. The block recursive least squares (BRLS) solution is shown to be equivalent to the BLMS algorithm with a decreasing step size. The BRLS is unbiased at any occurrence number of the signal and has the same steady-state variance as the BLMS but with a lower variance at the transient stage. The estimation methods can be interpreted in terms of linear, time-variant filtering. The performance of the methods is studied on an ECG signal, and the results show that the performance of the block algorithms is superior to that of the LMS algorithm. In addition, measurements with clinical interest are found to be more robustly estimated in noisy signals

Published in:

Signal Processing, IEEE Transactions on  (Volume:50 ,  Issue: 5 )