By Topic

Optimal designs for space-time linear precoders and decoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
A. Scaglione ; Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY, USA ; P. Stoica ; S. Barbarossa ; G. B. Giannakis
more authors

We introduce a new paradigm for the design of transmitter space-time coding that we refer to as linear precoding. It leads to simple closed-form solutions for transmission over frequency-selective multiple-input multiple-output (MIMO) channels, which are scalable with respect to the number of antennas, size of the coding block, and transmit average/peak power. The scheme operates as a block transmission system in which vectors of symbols are encoded and modulated through a linear mapping operating jointly in the space and time dimension. The specific designs target minimization of the symbol mean square error and the approximate maximization of the minimum distance between symbol hypotheses, under average and peak power constraints. The solutions are shown to convert the MIMO channel with memory into a set of parallel flat fading subchannels, regardless of the design criterion, while appropriate power/bits loading on the subchannels is the specific signature of the different designs. The proposed designs are compared in terms of various performance measures such as information rate, BER, and symbol mean square error

Published in:

IEEE Transactions on Signal Processing  (Volume:50 ,  Issue: 5 )