Cart (Loading....) | Create Account
Close category search window
 

A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaodong Zhang ; Intelligent Autom. Inc., Rockville, MD, USA ; Polycarpou, M.M. ; Parisini, T.

This paper presents a robust fault diagnosis scheme for abrupt and incipient faults in nonlinear uncertain dynamic systems. A detection and approximation estimator is used for online health monitoring. Once a fault is detected, a bank of isolation estimators is activated for the purpose of fault isolation. A key design issue of the proposed fault isolation scheme is the adaptive residual threshold associated with each isolation estimator. A fault that has occurred can be isolated if the residual associated with the matched isolation estimator remains below its corresponding adaptive threshold, whereas at least one of the components of the residuals associated with all the other estimators exceeds its threshold at some finite time. Based on the class of nonlinear uncertain systems under consideration, an isolation decision scheme is devised and fault isolability conditions are given, characterizing the class of nonlinear faults that are isolable by the robust fault isolation scheme. The nonconservativeness of the fault isolability conditions is illustrated by deriving a subclass of nonlinear systems and of faults for which these conditions are also necessary for fault isolability. Moreover, the analysis of the proposed fault isolation scheme provides rigorous analytical results concerning the fault isolation time. Two simulation examples are given to show the effectiveness of the fault diagnosis methodology

Published in:

Automatic Control, IEEE Transactions on  (Volume:47 ,  Issue: 4 )

Date of Publication:

Apr 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.