Cart (Loading....) | Create Account
Close category search window

Layout-driven memory synthesis for embedded systems-on-chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Benini, L. ; Dept. of Electron. & Comput. Sci., Bologna Univ., Italy ; Macchiarulo, L. ; Macii, A. ; Poncino, M.

Memory-processor integration offers new opportunities for reducing, the energy of a system. In the case of embedded systems, where memory access patterns can typically be profiled at design time, one solution consists of mapping the most frequently accessed addresses onto the on-chip SRAM to guarantee power and performance efficiency. In this work, we propose an algorithm for the automatic partitioning of on-chip SRAMs into multiple banks. Starting from the dynamic execution profile of an embedded application running on a given processor core, we synthesize a multi-banked SRAM architecture optimally fitted to the execution profile. The algorithm computes an optimal solution to the problem under realistic assumptions on the power cost metrics, and with constraints on the number of memory banks. The partitioning algorithm is integrated with the physical design phase into a complete flow that allows the back annotation of layout information to drive the partitioning process. Results, collected on a set of embedded applications for the ARM processor, have shown average energy savings around 34%.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:10 ,  Issue: 2 )

Date of Publication:

April 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.