Cart (Loading....) | Create Account
Close category search window
 

Functional partitioning for low power distributed systems of systems-on-a-chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yunsi Fei ; Dept. of Electr. Eng., Princeton Univ., NJ, USA ; Jha, N.K.

In this paper, we present a functional partitioning method for low power real-time distributed embedded systems whose constituent nodes are systems-on-a-chip (SOCs). The system level specification is assumed to be given as a set of task graphs. The goal is to partition the task graphs so that each partitioned segment is implemented as an SOC and the embedded system is realized as a distributed system of SOCs. Unlike most previous synthesis and partitioning tools, this technique merges partitioning and system synthesis (allocation, assignment, and scheduling) into one integrated process; both are implemented within a genetic algorithm. Genetic algorithms can escape local minima and explore the partitioning and synthesis design space efficiently. Through integration with an existing SOC synthesis tool, the proposed partitioning technique satisfies both the hard real-time constraints and the SOC area constraint of each partitioned segment. Under these constraints, our tool performs multi-objective optimization. Thus, with a single run of the tool, it produces multiple distributed SOC-based embedded system architectures that trade off the overall distributed system price and power consumption. Experimental results show the efficacy of our technique

Published in:

Design Automation Conference, 2002. Proceedings of ASP-DAC 2002. 7th Asia and South Pacific and the 15th International Conference on VLSI Design. Proceedings.

Date of Conference:

2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.