By Topic

Reliability modeling and assessment of the Star-Graph networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. Fitzgerald ; TRW, Las Vegas, NV, USA ; S. Latifi ; P. K. Srimani

The reliability of the Star Graph architecture is discussed. The robustness of the Star Graph network under node failures, link failures, and combined node and link failures is shown. The degradation of the Star Graph into Substar Graphs is used as the measure of system effectiveness in the face of failures. Models are provided for each of the failure and re-mapping modes evaluated herein, and the resilience of the Star Graph to failures is emphasized. This paper defines failure of a Star Graph as being when no fault-free (n - 1)-substars remain operational and the intermediate states are defined by the number of (n - 1)-substars that remain operational. A powerful tool (re-mapping) is introduced in which the number of operational (n 1)-substars can be maintained for longer periods, thus improving the overall MTTF (mean time to failure). For comparison the results of a similar reliability analysis of the hypercube is shown. The comparisons are considered conservative due to the failure model used herein for the star graph. One might apply re-mapping to hypercubes; while it would improve the overall MTTF of hypercubes, the hypercubes would still have an appreciably poorer performance than star graphs

Published in:

IEEE Transactions on Reliability  (Volume:51 ,  Issue: 1 )