By Topic

The study of fluorine-doped silicon dioxide (FSG) films property after thermal alloy for different film deposition temperature for sub-0.18 um logic yield improvement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Wu, Y.L. ; Taiwan Semicond. Co., Ltd, Hsinchu, Taiwan ; Wang, Y.L. ; Cheng, Y.L. ; Wang, J.K.
more authors

As feature size shrinks to the deep sub-micron regime, the RC delay of metal interconnection will increase and limit the performance of high-speed devices. To address this problem, fluorine-doped silicon dioxide (SiOF) has been introduced in advanced IMD applications. Many deposition methods have been studied, including PECVD and HDP CVD. HDP CVD was finally applied to most deep sub-micron processes because it can meet the gap-filling requirement. However, the fluorine-doped silicon dioxide film is an unstable film. It suffers from high water absorption and a fluorine instability problem. This problem will cause a device reliability issue and even defects to appear at the final alloy step. In this paper, the fluorine-doped silicon dioxide deposition temperature and post-thermal processes, including N2 alloy and vacuum-bake have been studied, find a way to overcome these problems. The fluorine-doped silicon dioxide film properties including the fluorine concentration, RI, and film thickness will be compared to the as-deposition after film is alloyed. The film SIMS and TDS data have also been studied in this paper. The result of the experiments show that a lower deposition temperature has a poorer film property and the post-thermal process can degas the unstable fluorine. The optimized combination of conditions, of fluorine-doped silicon dioxide deposition temperature and post-thermal treatment can create a good quality fluorine-doped silicon dioxide without a reliability issue.

Published in:

Semiconductor Manufacturing, 2000. Proceedings of ISSM 2000. The Ninth International Symposium on

Date of Conference:

2000