Cart (Loading....) | Create Account
Close category search window
 

A note on the number of solutions of the noncoplanar P4P problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hu, Z.Y. ; Inst. of Autom., Acad. Sinica, Beijing, China ; Wu, F.C.

In the literature, the PnP problem is indistinguishably defined as either to determine the distances of the control points from the camera's optical center or to determine the transformation matrices from the object-centered frame to the camera-centered frame. We show that these two definitions are generally not equivalent. In particular, we prove that, if the four control points are not coplanar, the upper bound of the P4P problem under the distance-based definition is 5 and also attainable, whereas the upper bound of the P4P problem under the transformation-based definition is only 4. Finally, we study the conditions under which at least two, three, four, and five different positive solutions exist in the distance based noncoplanar P4P problem

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 4 )

Date of Publication:

Apr 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.