Cart (Loading....) | Create Account
Close category search window

Analysis of the numerical dispersion of the 2D alternating-direction implicit FDTD method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
An Ping Zhao ; Electron. Lab., Nokia Res. Centre, Helsinki, Finland

The numerical dispersion property of the two-dimensional alternating-direction implicit finite-difference time-domain (2D ADI FDTD) method is studied. First, we notice that the original 2D ADI FDTD method can be divided into two sub-ADI FDTD methods: either the x-directional 2D ADI FDTD method or the y-directional 2D ADI FDTD method; and secondly, the numerical dispersion relations are derived for both the ADI FDTD methods. Finally, the numerical dispersion errors caused by the two ADI FDTD methods are investigated. Numerical results indicate that the numerical dispersion error of the ADI FDTD methods depends highly on the selected time step and the shape and mesh resolution of the unit cell. It is also found that, to ensure the numerical dispersion error within certain accuracy, the maximum time steps allowed to be used in the two ADI FDTD methods are different and they can be numerically determined

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:50 ,  Issue: 4 )

Date of Publication:

Apr 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.