Cart (Loading....) | Create Account
Close category search window

Formal specification and verification of safety and performance of TCP selective acknowledgment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Smith, A. ; Bell Labs, Murray Hill, NJ, USA ; Ramakrishnan, K.K.

We present a formal specification of the selective acknowledgment (SACK) mechanism that is being proposed as a new standard option for TCP. The formal specification allows one to reason about the SACK protocol; thus, we are able to formally prove that the SACK mechanism does not violate the safety properties (reliable, at most once, and in order message delivery) of the acknowledgment (ACK) mechanism that is currently used with TCP. The new mechanism is being proposed to improve the performance of TCP when multiple packets are lost from one window of data. The proposed mechanism for implementing the SACK option for TCP is sufficiently complicated that it is not obvious that it is indeed safe, so we think it is important to formally verify its safety properties. In addition to safety, we are also able to show that SACK can improve the time it takes for the sender to recover from multiple packet losses. With the additional information available at a SACK sender, the round-trip time that a cumulative ACK sender waits before retransmitting each subsequent packet lost after the very first loss can be saved. We also show that SACK can improve performance even with window sizes as small as four packets and in situations where acknowledgment packets are lost

Published in:

Networking, IEEE/ACM Transactions on  (Volume:10 ,  Issue: 2 )

Date of Publication:

Apr 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.