Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Matching and scheduling algorithms for minimizing execution time and failure probability of applications in heterogeneous computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dogan, A. ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Ozguner, F.

In a heterogeneous distributed computing system, machine and network failures are inevitable and can have an adverse effect on applications executing on the system. To reduce the effect of failures on an application executing on a failure-prone system, matching and scheduling algorithms which minimize not only the execution time but also the probability of failure of the application must be devised. However, because of the conflicting requirements, it is not possible to minimize both of the objectives at the same time. Thus, the goal of this paper is to develop matching and scheduling algorithms which account for both the execution time and the reliability of the application. This goal is achieved by modifying an existing matching and scheduling algorithm. The reliability of resources is taken into account using an incremental cost function proposed in this paper and the new algorithm is referred to as the reliable dynamic level scheduling algorithm. The incremental cost function can be defined based on one of the three cost functions developed here. These cost functions are unique in the sense that they are not restricted to tree-based networks and a specific matching and scheduling algorithm. The simulation results confirm that the proposed incremental cost function can be incorporated into matching and scheduling algorithms to produce schedules where the effect of failures of machines and network resources on the execution of the application is reduced and the execution time of the application is minimized as well

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:13 ,  Issue: 3 )