By Topic

The principles of software QRS detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
B. -U. Kohler ; Dept. of Electr. Eng., Berlin Univ. of Technol., Germany ; C. Hennig ; R. Orglmeister

The QRS complex is the most striking waveform within the electrocardiogram (ECG). Since it reflects the electrical activity within the heart during the ventricular contraction, the time of its occurrence as well as its shape provide much information about the current state of the heart. Due to its characteristic shape it serves as the basis for the automated determination of the heart rate, as an entry point for classification schemes of the cardiac cycle, and often it is also used in ECG data compression algorithms. In that sense, QRS detection provides the fundamentals for almost all automated ECG analysis algorithms. Software QRS detection has been a research topic for more than 30 years. The evolution of these algorithms clearly reflects the great advances in computer technology. Within the last decade many new approaches to QRS detection have been proposed; for example, algorithms from the field of artificial neural networks genetic algorithms wavelet transforms, filter banks as well as heuristic methods mostly based on nonlinear transforms. The authors provide an overview of these recent developments as well as of formerly proposed algorithms.

Published in:

IEEE Engineering in Medicine and Biology Magazine  (Volume:21 ,  Issue: 1 )