By Topic

Edge-preserving tomographic reconstruction with nonlocal regularization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Tomographic image reconstruction using statistical methods can provide more accurate system modeling, statistical models, and physical constraints than the conventional filtered backprojection (FBP) method. Because of the ill posedness of the reconstruction problem, a roughness penalty is often imposed on the solution to control noise. To avoid smoothing of edges, which are important image attributes, various edge-preserving regularization methods have been proposed. Most of these schemes rely on information from local neighborhoods to determine the presence of edges. In this paper, we propose a cost function that incorporates nonlocal boundary information into the regularization method. We use an alternating minimization algorithm with deterministic annealing to minimize the proposed cost function, jointly estimating region boundaries and object pixel values. We apply variational techniques implemented using level-sets methods to update the boundary estimates; then, using the most recent boundary estimate, we minimize a space-variant quadratic cost function to update the image estimate. For the positron emission tomography transmission reconstruction application, we compare the bias-variance tradeoff of this method with that of a "conventional" penalized-likelihood algorithm with local Huber roughness penalty.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:21 ,  Issue: 2 )