By Topic

Fuzzy rule-based classification of remotely sensed imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bardossy, A. ; IWS, Stuttgart Univ., Germany ; Samaniego, L.

The purpose of this paper is to investigate the applicability of fuzzy rule-based modeling to classify a LANDSAT TM scene from 1984 of an area located in the south of Germany. Both a land cover map with four different categories and an image depicting the degree of ambiguity of the classification for each pixel is the expected output. The fuzzy classification algorithm will use a rule system derived from a training set using simulated annealing as an optimization algorithm. The results are then validated and compared with a common classification method in order to judge the effectiveness of the proposed technique. It will also be shown that the proposed method with only nine rules for four different land cover classes performs slightly better than the maximum likelihood classifier (MLC). For error assessment, the traditional error matrix and fuzzy operators have been used

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:40 ,  Issue: 2 )