By Topic

A simplified method for estimating the total water vapor content over sea surfaces using NOAA-AVHRR channels 4 and 5

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. A. Sobrino ; Dept. of Thermodynamics, Valencia Univ., Spain ; J. C. Jimenez ; N. Raissouni ; G. Soria

A simplified method for estimating the total amount of atmospheric water vapor, W, over sea surfaces using NOAA-AVHRR Channels 4 and 5 is presented. This study has been carried out using simulated AVHRR data at 11 and 12 μm (with MODTRAN 3.5 code and the TIGR database) and AVHRR, PODAAC, and AVISO databases provided by the Louis Pasteur University (Strasbourg-France), NASA-NOAA, and Meteo France, respectively. The method is named linear atmosphere-surface temperature relationship (LASTR). It is based on a linear relationship between the effective atmospheric temperature in AVHRR Channel 4 and sea surface temperature. The LASTR method was compared with the linear split-window relationship (LSWR), which is based on a linear regression between W and the difference of brightness temperature measured in the same channels (ΔT=T4-TS). The results demonstrate the advantage of the LASTR method, which is capable of estimating W from NOAA-14 afternoon passes with a bias accuracy of 0.5 g cm-2 and a standard deviation of 0.3 g cm-2, compared with the W obtained by the AVISO database. In turn, a global bias accuracy of 0.1 g cm-2 and a standard deviation within 0.6 g cm-2 have been obtained in comparison with the W included in the PODAAC database derived from the special sensor microwave/imager (SSM/I) instrument

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:40 ,  Issue: 2 )