By Topic

Bandwidth scaling for fading multipath channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Medard, M. ; Lab. for Inf. & Decision Syst., MIT, Cambridge, MA, USA ; Gallager, R.G.

We show that very large bandwidths on fading multipath channels cannot be effectively utilized by spread-spectrum systems that (in a particular sense) spread the available power uniformly over both time and frequency. The approach is to express the input process as an expansion in an orthonormal set of functions each localized in time and frequency. The fourth moment of each coefficient in this expansion is then uniformly constrained. We show that such a constraint forces the mutual information to 0 inversely with increasing bandwidth. Simply constraining the second moment of these coefficients does not achieve this effect. The results suggest strongly that conventional direct-sequence code-division multiple-access (CDMA) systems do not scale well to extremely large bandwidths. To illustrate how the interplay between channel estimation and symbol detection affects capacity, we present results for a specific channel and CDMA signaling scheme

Published in:

Information Theory, IEEE Transactions on  (Volume:48 ,  Issue: 4 )