By Topic

A parallel built-in self-diagnostic method for embedded memory arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Der-Cheng Huang ; Dept. of Comput. Sci. & Inf. Eng., Nat. Chung-Cheng Univ., Chiayi, Taiwan ; Wen-Ben Jone

In this paper, the authors propose a new built-in self-diagnosis method to simultaneously diagnose spatially distributed memory modules with different sizes. Based on the serial interfacing technique, the serial fault masking effect is observed and a bidirectional serial interfacing technique is proposed to deal with such an issue. By tolerating redundant read/write operations, they develop a new march algorithm called DiagRSMarch to achieve the goals of low test signal routing overhead, tolerable diagnostic time, and high diagnostic coverage. It can be proved that DiagRSMarch can identify all stuck-at, transition, state coupling, and dynamic coupling faults occurring in all memory arrays. Experimental results also demonstrate that the test efficiency of DiagRSMarch is highly dependent on memory topology, defect-type distribution, and degree of parallelism

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:21 ,  Issue: 4 )