By Topic

A statistical methodology for the design of high-performance CMOS current-steering digital-to-analog converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Crippa, P. ; Dipt. di Elettronica e Autom., Ancona Univ., Italy ; Turchetti, C. ; Conti, M.

With the shrinking of device sizes, random device variations become a key factor limiting the performances of high-resolution complementary metal-oxide-semiconductor (CMOS) current-steering digital-to-analog converters (DACs). In this paper, we present a novel design methodology based on statistical modeling of MOS transistor drain current that allows designers to explore different DAC architectures and to study the effects of technological variations on system performance without using time-consuming Monte Carlo simulations. This technique requires as a first step the estimation of the mean value and the autocorrelation function of a single stochastic process. This stochastic process models the device drain current and summarizes all the random sources associated with the process/device variations since the current represents the effect of all of them. Subsequently, on the basis of such an approach, a behavioral model of current-steering DACs has been developed. Finally, the statistical simulation of static performances such as differential nonlinearity and integral nonlinearity has been carried out for different DAC architectures based on the behavioral model previously derived

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:21 ,  Issue: 4 )